
Lejacon: A Lightweight and Efficient Approach to
Java Confidential Computing on SGX

1Xinyuan Miao, 2Ziyi Lin, 2Shaojun Wang, 2Lei Yu, 2Sanhong Li,
1Zihan Wang, 1Pengbo Nie, 1Yuting Chen, 1Beijun Shen, 3He Jiang

1Shanghai Jiao Tong University, Shanghai, China
2Alibaba Group, Shanghai, China

3Dalian University of Technology, Dalian, China
{mxinyuan, wangzh99, yuemonangong, chenyt, bjshen}@sjtu.edu.cn,

{cengfeng.lzy, jeffery.wsj, lei.yul, sanhong.lsh}@alibaba-inc.com, hejiang@dlut.edu.cn

Abstract—Intel’s SGX is a confidential computing technique.
It allows key functionalities of C/C++/native applications to be
confidentially executed in hardware enclaves. However, numerous
cloud applications are written in Java. For supporting their
confidential computing, state-of-the-art approaches deploy Java
Virtual Machines (JVMs) in enclaves and perform confidential
computing on JVMs. Meanwhile, these JVM-in-enclave solutions
still suffer from serious limitations, such as heavy overheads
of running JVMs in enclaves, large attack surfaces, and deep
computation stacks. To mitigate the above limitations, we for-
malize a Secure Closed-World (SCW) principle and then propose
Lejacon, a lightweight and efficient approach to Java confidential
computing. The key idea is, given a Java application, to (1)
separately compile its confidential computing tasks into a bundle
of Native Confidential Computing (NCC) services; (2) run the
NCC services in enclaves on the Trusted Execution Environment
(TEE) side, and meanwhile run the non-confidential code on a
JVM on the Rich Execution Environment (REE) side. The two
sides interact with each other, protecting confidential computing
tasks and as well keeping the Trusted Computing Base (TCB)
size small.

We implement Lejacon and evaluate it against OcclumJ (a
state-of-the-art JVM-in-enclave solution) on a set of benchmarks
using the BouncyCastle cryptography library. The evaluation
results clearly show the strengths of Lejacon: it achieves compet-
itive performance in running Java confidential code in enclaves;
compared with OcclumJ, Lejacon achieves speedups by up to
16.2× in running confidential code and also reduces the TCB
sizes by 90+% on average.

Index Terms—Software Guard Extensions, Separation Compi-
lation, Native Confidential Computing Service, Runtime, Secure
Closed-World

I. INTRODUCTION

As companies are deploying their applications on clouds,
security concerns usually exist in running these applications on
non-confidential platforms. Confidential computing provides
trusted execution environments (TEEs) in which confidential
code, data, and execution are protected, meeting the security
requirements for computations [1].

Software Guard Extensions (SGX) is a typical confiden-
tial computing technology developed by Intel [2]. It is the
cornerstone of the confidential computing roadmap for Intel
server processors (e.g., Xeon processors) [3], and attracts many
attentions from cloud service providers such as Microsoft [4]

and IBM [5]. More specifically, SGX provides users with
hardware enclaves. An enclave is an execution environment
with a reserved memory region, guaranteeing confidentiality
and integrity of an application’s code and data—in the SGX
threat model, only the CPUs and the enclaves are trusted [6],
[7], [8]. A software application can then be divided into
confidential and non-confidential code: on the Rich Execu-
tion Environment (REE) side, the non-confidential code runs
normally; on the TEE side, the confidential code runs in an
enclave, isolated from the users’ operating systems, the off-
chip hardware systems, and the other software applications in
the non-confidential world. Here we use the term “confidential
code” to indicate that the execution and the data are protected,
as SGX provides a form of isolation for code and data [9].

Many efforts, including library operating systems (Li-
bOSes) [10], [11], [12], [13], [14] and partitioning frame-
works [15], [16], have been spent on deploying and run-
ning C/C++ applications in enclaves. On the other hand,
numerous cloud applications are written in Java, while Java
is vulnerable due to its flexibility. For example, attackers
can dynamically load a malicious class to read decrypted
secrets in the Java heap—this is how the famous Log4j attacks
do [17]. Demand for running Java applications in enclaves
thus exists [18], [19], whilst it is challenging to support
Java confidential computing—the traditional SGX technique
is not Java-friendly, since enclaves can only be created by
C/C++/native APIs and thus Java is inherently not supported
in the enclave [20].

One mainstream is to run Java applications on Java vir-
tual machines (JVMs) running in enclaves [20]. SGX-LKL-
JVM [21], Civet [22], Uranus [23] and Occlum-JVM [24]
belong to this mainstream. Meanwhile, these JVM-in-enclave
solutions still suffer from serious limitations. As Fig. 1
shows, a JVM (e.g., OpenJDK’s HotSpot [25] or Eclipse’s
OpenJ9 [26]) needs to be deployed in the enclave, deepening
the computation stack; all code residing in the enclave, in-
cluding the confidential Java code, the JVM, and the libraries,
is all taken into the Trusted Computing Base (TCB) for the
application. The larger the TCB size, the larger the attack
surface, the more likely the computing is vulnerable [27]. In



Java Application

Confidential CodeNon-Confidential Code

JVM

LibOS

REE Side TEE Side

JVM

Enclave 

Execution Execution 

System calls 

Partition 

Fig. 1. A typical JVM-in-enclave solution for Java confidential computing.

this respect, the attack surface of the enclave is significantly
bloated by a JVM and its libraries that usually have millions
of LoC (lines of code).

An alternative is to compile the whole application into
native code and run it in an enclave, which allows JVMs to
be eliminated from enclaves. However, it is not feasible in
practice. First, a great number of system and user libraries
also need to be compiled and pre-deployed. These libraries
reside in the enclave, incurring a large attack surface. Second,
an enclave is only an execution environment, rather than a
fully functional operating system. An application may have
to run non-confidential code and perform system calls on the
REE side.

Only the confidential code, rather than the whole appli-
cation, needs to run in the enclave. Having realized the
potentials of Java confidential computing and the limitations
of existing JVM-in-enclave solutions, we propose Lejacon, a
lightweight and efficient approach to Java confidential comput-
ing: Lejacon compiles the confidential code into a bundle of
Native Confidential Computing (NCC) services; only the NCC
services, along with the classes they depend on, are ultimately
executed in enclaves; the JVM, the non-confidential code and
its libraries, are still executed on the REE side.

This paper makes the following contributions:

• Principle. We propose and formalize a Secure Closed-
World (SCW) principle. This principle is employed to
direct Java confidential computing, allowing all of the
reachable classes, rather than gigantic libraries, to be
natively compiled. This principle is general and can also
be applied, with slight modifications, to other partition
frameworks for confidential computing.

• Approach. Lejacon takes a balance between Java’s plat-
form independence and the necessity of native execution
in SGX enclaves: it follows a demand-driven program-
ming paradigm, allowing programmers to annotate in a
Java application the confidential computing tasks; it takes
an SCW-directed separate compilation technique, which
compiles the confidential code into NCC services and the
non-confidential code into bytecode files; Lejacon also

provides a runtime system for running Java applications
and their NCC services.

• Implementation and Evaluation. We implement Lejacon
as a lightweight infrastructure for Java confidential com-
puting. We also evaluate it against OcclumJ (a state-
of-the-art JVM-in-enclave solution) on a set of bench-
marks using the BouncyCastle cryptography library. The
evaluation results clearly show the strengths of Lejacon:
it achieves competitive performance in running Java
confidential code in enclaves; compared with OcclumJ,
Lejacon achieves the speedups by up to 16.2× in running
confidential code and also reduces the TCB sizes by
90+% on average.

To the best of our knowledge, Lejacon is the first tech-
nique that applies the SCW principle to Java confidential
computing; Lejacon significantly reduces developers’ costs,
as Java developers may benefit from Lejacon in using pre-
deployed confidential cloud services and developing their own
confidential services. Lejacon is also valuable in practice:
it provides the fundamental approach to the Teaclave Java
TEE SDK and has been employed in practice. We envision
Lejacon, along with the SDK, to provide best practices for
Java confidential computing.

The remainder of this paper is organized as follows: Sec-
tion II introduces the Intel’s SGX technique. Section III uses
an example to illustrate how Lejacon supports Java confidential
computing. Section IV presents the technique details of Leja-
con. Section V evaluates Lejacon. Section VI presents related
work and Section VII concludes.

II. BACKGROUND

SGX is an x86-64 instruction set extensions technique.
Given a software application, SGX supports its confidential
computing as follows.

First, the application is split into the confidential and the
non-confidential parts, which will run on the TEE side and
the REE side, respectively.

Second, when a confidential computing task needs to be
performed, the application launches an enclave. An enclave is
encrypted in a special area of the physical memory. Data in
the enclave is decrypted only inside the CPU and only at the
request of instructions executed from within the enclave itself.

Third, at runtime, for performing a confidential computing
task, SGX constructs a memory heap and a context in the
enclave [28]—the former is leveraged for in-enclave memory
allocation; the latter corresponds to the control structure and
the stack of each process/thread entering the enclave. In
addition, only the code within the enclave can access its data;
when the task completes, its data will reside in the enclave or
be destroyed.

Fourth, to bridge the confidential/non-confidential parts,
SGX provides two interfaces: Enclave Call (ECall) for the
calls from the non-confidential world to the functions within
enclaves, and Outside Call (OCall) the calls in reverse [29].
An ECall typically invokes a confidential computing task and
retrieves the result; an OCall either invokes a user-defined,



class Example
main(args)

...
enclave = EnclaveFactory.create();
...
service = enclave.load(RSAService.class);
service.encrypt(plainText);
enclave.destroy();
fw.write(getDate());
...

class RSAService implements EncryptService
byte[] encrypt(String plainText)

...
ct = cipher.processBlock(...);
ret = new String(ct, "utf-8");
fw.write(ret);
...

@EnclaveService
interface EncryptService

byte[] encrypt(String plainText);

Java Call

Partition

...
e8 74 f7 8c 00 callq a11410 <RSAEngine_processBlock>
...
e8 ec a8 3e 00 callq 52c5f0 <String_constructor>
90 nop
48 8b 7c 24 10 mov 0x10(%rsp),%rdi
48 8b 74 24 30 mov 0x30(%rsp),%rsi
e8 fc ab 3b 00 callq 4fc910 <Writer_write>
...

Confidential

...
21: invokestatic #21 // Method create_enclave:()I
...
26: invokestatic #27 // Method encrypt:(Ljava/lang/String;)[B
...
30: invokestatic #31 // Method destroy_enclave:()I
...
35: invokestatic #34 // Method getDate:()Ljava/lang/String;
38: invokevirtual #38 // Method java/io/FileWriter.write

:(Ljava/lang/String;)V
...

Non-ConfidentialJNI Call

Example.class

NCCservice.so

Fig. 2. An example illustrating how Lejacon partitions an application for confidential computing.

non-confidential function outside the enclave or performs a
system call. Enclaves can also collaborate with each other
after attestation—an enclave must prove its trustworthiness
to the counterpart. For example, an enclave may establish a
secure channel with other enclaves based on Diffie-Hellman
Key Exchange for protecting subsequent communications [30],
[31], [32].

III. AN ILLUSTRATIVE EXAMPLE

Fig. 2 shows an illustrative example of using Le-
jacon to support Java confidential computing. A de-
veloper annotates the interface EncryptService us-
ing @EnclaveService, specifying a confidential method
encrypt. RSAService is an RSA encryption ser-
vice implementing EncryptService. Thus its method
encrypt needs to be confidentially executed. In ad-
dition, the developer needs to create an enclave (i.e.,
EnclaveFactory.create()), load and execute the
method encrypt (i.e., service.encrypt(...)), and
destroy the enclave after the confidential method completes
(i.e., enclave.destroy()).

Lejacon automatically divides the application into two parts.
Lejacon performs reachability analysis of the confidential
service RSAService, and compiles the class, along with
the classes it depends on, into NCCservice.so. Here
NCCservice.so is a shared library containing an NCC
service RSAService and its dependent classes. The non-
confidential part is compiled into bytecode that can invoke
the NCC service using the Java Native Interface (JNI) tech-
nology [33].

At runtime, the application still runs on a JVM
on the REE side. Once a confidential computing task
RSAService.encrypt(...) needs to be executed, an en-
clave is created and initialized (i.e., create_enclave()).
Lejacon deploys NCCservice.so on the TEE side and
executes the NCC service in the enclave. An NCC service
can be invoked either by the non-confidential code or by the

SCW Principle

Annotation Bytecode

NCC services

JVM

Lejacon 
Engine

Code
TEE

REE

Exec. 

RuntimeDemand-driven 
programming paradigm 

Ecall/Ocall 
through JNI 

Lejacon 
Toolchain 

Fig. 3. An overview of Lejacon.

confidential code—Once invoked, the service will run, and
may invoke any native functions in NCCservice.so. After
the NCC service completes, Lejacon calls a native function
destroy_enclave() to shut down the enclave and release
the computing resources. Note that it is a design choice that we
let developers create/destroy enclaves, since (1) the compiler is
not sensitive to the availability of enclaves, and (2) developers
should be aware of where their code is running.

IV. APPROACH

As Fig. 3 shows, given a Java application, Lejacon sup-
ports its confidential computation by (1) a demand-driven
programming paradigm and a separate compilation technique
that divide the application into the confidential and the non-
confidential parts (§IV-B), and (2) a runtime system that runs
the confidential code on a JVM on the REE side and runs the
NCC services in enclaves (§IV-C).

A. Foundation

A Java method is protected if it runs in an enclave. However,
the method can still be under attack if it invokes any methods
or APIs (directly or indirectly) from the non-confidential
world. Therefore, Lejacon directs Java confidential computing
by following a Secure Closed-World (SCW) principle.

Proposition 1 (SCW Principle). A confidential service, along
with all of the classes it depends on and all of the methods it



m1 g2 m7m6g5m3 m4 m8

TEE side TEE side

Fig. 4. An example of a call chain with two confidential call subchains. On
the REE side, m1, m4, and m8 run successively, while m1 calls g2 and m4

calls g5.

invokes, must be executed in the enclave(s); it does not invoke
any methods from the non-confidential world.

Formally, we define confidential computing from the per-
spective of call chains.

Definition 1 (Call chain). A call chain is defined as a sequence
of method invocations: [m0 → m1 → · · · → mn]. For
representing method invocations, we use m[. . . g . . . ] to denote
that m invokes a method g.

Definition 2 (Confidential call chain). A confidential call
chain is a chain s : cm[. . . ], where cm is a starting confidential
method. Any method in [. . . ] also needs to be confidentially
computed.

As Fig. 4 shows, s1 : g2[m3] and s2 : g5[m6[m7]] are two
confidential call subchains, respectively. The two subchains
need to run in enclaves.

Given any confidential method cm, we then use the SCW
principle to construct a set (say SC) that contains all reachable
classes (say confidential classes) for running cm’s confidential
call subchain. Let CM be the set of confidential methods, C
the set of classes, and M the set of class methods. The SCW
principle can be formalized into a set of rules:

∀cm ∈ CM,m ∈ M, reach(cm,m) ⇒ m ∈ CM ;
(RULE 1)

∀sc ∈ SC, c ∈ C, reach(sc, c) ⇒ c ∈ SC; (RULE 2)
∀cm ∈ CM, c ∈ C, reach(cm, c) ⇒ c ∈ SC; (RULE 3)
∀sc ∈ SC,m ∈ M, reach(sc,m) ⇒ m ∈ CM, (RULE 4)

where

reach(A,B) =

 true if a class/method B is reachable
from another class/method A;

false otherwise.

That is, any method invoked in a confidential method or
any class reachable from a confidential method/class is also
confidential. A detailed explanation of the reachability will be
presented in §IV-B2.

B. Programming Paradigm

1) Annotation: Lejacon follows a demand-driven program-
ming paradigm that developers explicitly annotate confidential
computing tasks and then Lejacon separately compiles these
tasks into NCC services.

In order to do this, a developer creates a service interface
with an annotation @EnclaveService and then imple-
ments the service’s methods in each implementation class. As
the following code shows, an @EnclaveService interface

(e.g., Service) is taken as an interface for enclaves; the
implementation class ServiceImpl and its two methods
(i.e., foo, bar) are confidential.

1 @EnclaveService
2 interface Service{
3 void foo();
4 byte[] bar(String p)

;
5 }

1 class ServiceImpl
2 implements Service{
3 void foo(){...}
4 byte[] bar(String p)

{...}
5 }

Each class implementing an @EnclaveService interface
is taken as the starting point of the reachability analysis
(§IV-B2). The annotation thus directs the generation of a
closed-world for Java confidential computing.

Note that to better understand application-specific demand,
we require the user to annotate which service(s) should be
confidential. It is a lightweight task. There remains a promising
direction regarding whether confidential code can be automat-
ically annotated.

2) Separate Compilation: The annotated interface de-
clares confidential methods. Lejacon builds a compiler atop
GraalVM [34]. GraalVM allows a Java application to be
ahead-of-time (AOT) compiled into a native executable. On
the basis of the GraalVM’s capability of AOT compilation,
Lejacon compiles all of the confidential classes and methods
into a shared library. The library, which contains the compiled
code of the reachable Java bytecode, is deployed on the TEE
side. This separate compilation greatly reduces the TCB size.

First, Lejacon detects all of the starting confidential methods
followed by performing reachability analysis. Any method
declared in an @EnclaveService interface, if loaded by an
enclave, is compiled into an NCC service. Lejacon compiles
all of the reachable classes and methods into a shared library.

Algorithm 1 describes the process of reachability analysis
and library generation. This algorithm takes a set of starting
confidential methods as input and generates a shared library lib
as output. These confidential methods are taken as the starting
points for reachability analysis.

Let SC and CM be two sets storing confidential classes and
methods, respectively. Lejacon leverages the static analyzer
of GraalVM [35], which iteratively picks up elements from
SC and CM and then resolves reachable methods and classes
(lines 4∼10):

• If a class is resolved, Lejacon also resolves its
parent class, its fields’ types, its class initialization
method (⟨clinit⟩), and its object initialization methods
(c.init0, c.init1, etc.) (lines 12∼18);

• If a static method is resolved, Lejacon also resolves its
local variables’ types and the methods invoked in this
method (lines 24∼33);

• If a non-static method is resolved, Lejacon also resolves
its class, its local variables’ types, and the methods
invoked in this method (lines 22∼33).



Algorithm 1: An algorithm for native compilation
Input : Source code of a Java application;

A set of starting confidential methods CM
Output : A native library lib

1 SC1 ← a set of interfaces declaring the methods in CM
2 SC2 ← a set of classes implementing the methods in CM
3 SC ← SC1 ∪ SC2

4 repeat
5 pick up e in CM ∪ SC
6 if e ∈ SC then ResolveClass(e)
7 else ResolveMethod(e)
8 until all classes in SC and all methods in CM are resolved
9 compile classes in SC and methods in CM into lib

10 return lib

11 Function ResolveClass(c):
12 if ¬c.resolved then
13 c.resolved← true
14 SC ← SC ∪ {c.parent}
15 CM ← CM ∪ {c.⟨clinit⟩} ∪ {c.init0, c.init1, . . . }
16 foreach field f of c do
17 C′ ← Points-to(f)
18 SC ← SC ∪ C′

19 Function ResolveMethod(c.m):
20 if c.m is safe and ¬c.m.resolved then
21 c.m.resolved← true
22 if m is not static then
23 SC ← SC ∪ {c}
24 foreach variable v used in c.m do
25 C′ ← Points-to(v)
26 SC ← SC ∪ C′

27 foreach method invocation in c.m do
28 if a static method c′.m′ is invoked then
29 CM ← CM ∪ {c′.m′}
30 if a non-static method o.m′ is invoked and o is the

receiver object then
31 C′ ← Points-to(o)
32 foreach c′ in C′ do
33 CM ← CM ∪ {c′.m′}

Lejacon needs to perform points-to analysis (i.e., Points-to in
Algorithm 1) [36], [37], [38] for analyzing an object’s class(es)
or the method(s) invoked when dynamic binding occurs.

Lejacon uses GraalVM Native Image tool [39], a native
compiler for Java program, to compile all of the classes in
SC and create a native library lib. For reducing the TCB
size, Lejacon partially compiles each reachable class—any
method of a confidential class, if unreachable from the starting
confidential methods, can be excluded from the compilation.

Second, Lejacon uses the traditional Java programming lan-
guage compiler to compile the application’s non-confidential
code into bytecode files (*.class).

Note that Lejacon does provide a set of APIs for enclaves’
lifecycle management: before invoking an NCC service, it
creates an enclave isolation; confidential services can then be
loaded and executed inside the enclave; after completing all
the confidential computations, it can destroy the enclave to
recycle the memory resource. Correspondingly, a bundle of
native interfaces, as the following shows, are compiled into
bytecode for creating/destroying an enclave, loading an NCC

service, etc.

1 static native int create_enclave();
2 /* an NCC function */
3 static native int confidential_foo(int m);
4 static native int destroy_enclave();
5 /* loads the library */
6 System.load("NCCservice.so");
7 create_enclave();
8 destroy_enclave();

3) Optimization: An NCC service is a round-trip service,
indicating the time spent on confidential computing includes
not only the time on in-enclave computation but also that
on creating/destroying enclaves, synchronizing execution con-
texts, etc. (see §IV-C).

However, an enclave may be frequently entered and exited
because an NCC service needs to be repeatedly invoked. It is
likely to lead to heavy workloads in synchronizing execution
contexts on the both sides. In case that an NCC service s needs
to be invoked for n times, we have

ET = ET0 + ET1 + ET2

ET0 = n× et0

ET1 = n× et1

where ET is the total time spent on confidential computing;
ET0, ET1, and ET2 are the time on running confiden-
tial code, preparing/synchronizing execution contexts, enclave
management (e.g., creating an enclave and loading libraries),
respectively; et0 is the time on executing s, and et1 that on
preparing the context of s.

Optimization can be conducted to reduce the time for
context synchronizations. As Listing 1 and Listing 2 show,
by inlining a loop containing confidential methods, Lejacon
can automatically transform the loop into an NCC service.
The total execution time is reduced to

ET = n× et0 + et1 + ET2

This optimization strategy saves the costs for context syn-
chronizations, and thus reduces the total execution time. A
further evaluation will be given in §V-C.

C. Runtime Support

Lejacon provides a runtime system for confidential com-
puting. It allows for multiple enclaves, supporting much more
flexible confidential computing — ideally, one enclave corre-
sponds to one confidential call chain. As Figure 5(a) shows,
the runtime is composed of:

• A JVM for executing non-confidential code on the REE
side. The JVM also allows the application to invoke NCC
services via JNI;

• A set of execution engines, each of which is bounded to
an enclave and responsible for executing NCC services in
the enclave. The engine is built atop Substrate VM run-
time, a popular runtime for native Java executables [40];



Listing 1. Before optimization: a
service encode is repeatedly
invoked.

1 // main()
2 ...
3 String s = ...;
4 for(int i=0;i<n;i++)
5 result=service.

encode(s);
6 ...
7

8 @EnclaveService
9 interface MyService{

10 String encode(String
str);

11 }
12

13 class ServiceImpl1
14 implements MyService{
15 String encode(String

str){...}
16 }
17

18

19

Listing 2. After optimization: a
wrapped service wencode is
invoked.

1 //main()
2 ...
3 String s = ...;
4 result=service.

wencode(n,s);
5 ...
6

7 @EnclaveService
8 interface MyService{
9 String encode(String

str);
10 String wencode(int n,

String s);
11 }
12 class ServiceImpl1
13 implements MyService{
14 String encode(String

str){...}
15 String wencode(int n,

String s){
16 ...
17 for(int i=0;i<n;i++)
18 result=encode(s);
19 return result;
20 }}

• A communication component for conducting attestation
of the TEEs, managing enclaves, and creating/synchroniz-
ing execution contexts between the two sides. Specially,
Lejacon uses Java dynamic proxy to delegate users’
enclave service invocations to actual TEE invocations.

1) Memory Management: Memory allocation can occur on
either the TEE side or the REE side. Fig. 5(b) shows the
memory layout for running a Java application. The memory
space is mainly managed by the JVM. However, when an NCC
service needs to run, an enclave space, which is taken as a
virtual space of the JVM’s memory space, is set up.

For facilitating our discussions, we use rh and rs to denote
the heap and the stack on the REE side, respectively. We also
use th and ts to denote the heap and the stack on the TEE
side, respectively.

Memory allocation can be performed during executions.
Objects created by each NCC service are allocated in th. The
heap is managed by a garbage collector (GC) provided by the
Substrate VM runtime—the GC allocates memories in th, and
collects garbage when th is full.

Similar to JVM, an enclave also has a stack space for
running NCC services [28]. Stack frames of confidential calls
are stored in the protected stack ts. When an ECall of an
NCC service cm[. . . ] is made, a stack frame for cm, ϕcm, is
constructed and pushed into ts; new stack frames are further
pushed into ts when native functions are called.

2) Execution Context: We let an execution context be
abstracted for an NCC service s.

Definition 3 (Execution context). Let γ be a specific execution
environment. The execution context of a method m on γ, say

LejaconN

Execution Engine 

Enclave

Context Sync.

NCC Services

Execute

LejaconJ

App Bytecode

④ Invoke 
service

① Create 
enclave

② Attestation ③ Engine Start-up ⑤ ECall

Enclave

JVM Enclave

...

(a) Architecture.

Jframe
Nframe

JVM Memory

Nframe

f1
f2
...

...

Enclave 
Code

Enclave Memory

PC 
Registers

Method
Area

...

rh (heap) ts (stack) th (heap)rh (heap)

...

...

(b) Memory layout.

Fig. 5. An overview of Lejacon’s runtime system.

ξ(m, γ), is a pair

ξ(m, γ) = ⟨γ(τm), γ(ϕm)⟩,

where γ(τm) is a set of heap objects on which m depends and
γ(ϕm) is the stack frame for running m on γ.

Similarly, the execution context of an NCC service s :
cm[. . . ] on γ, say ξ(s, γ), is a pair

ξ(s, γ) = ⟨γ(τs), γ(ϕcm)⟩,

where γ(τs) is a set of heap objects on which the methods in
s depend and γ(ϕcm) is the stack frame for running cm on γ.

Here γ(τm) is computed by analyzing the objects that may
be accessed by m. Similarly, γ(τs) is computed by analyzing
the objects that may be accessed either by cm or by any
method in [. . . ]. The algorithm is omitted because it is similar
to the serialize algorithm presented in Algorithm 2.

3) Context Synchronization: Lejacon’s runtime is correct if
given the same execution context, the NCC service s : cm[. . . ]
runs equivalently in an enclave and on a JVM. Ideally, an
execution context equivalent to that on the JVM should be
prepared for executing s in an enclave, i.e.,

ξ(s, tee) = ξ(s, ree)

For guaranteeing the equivalence, the communication com-
ponent is responsible for synchronizing contexts. TABLE I
lists the APIs for managing execution contexts. These APIs
allow NCC services to run on TEEs while keeping the
contexts on both sides synchronized. For example, for ex-
ecuting methods in an NCC service s, Lejacon creates the
execution context using createTEEContext: ξ(s, ree) is
collected and serialized, and then transmitted to the TEE



TABLE I
APIS FOR CONTEXT SYNCHRONIZATION.

API Description
Context createTEEContext() Create ξ(m, tee) using ξ(m, ree).
void updateTEEContext() Update ξ(m, tee) using ξ(m, ree).
void updateREEContext() Update ξ(m, ree) using serializable ob-

jects exposed by m.
Context getTEEContext() Retrieve serializable objects exposed by

m.
Context getREEContext() Retrieve ξ(m, ree).

Algorithm 2: An algorithm for context synchroniza-
tion

Input : An invoked confidential method m
Output : A set of objects in synchronization Context

1 unscanned← a set of objects referenced by static class variables
and variables in the stackframe of m

2 scanned← updated← ∅
3 repeat
4 o← pick(unscanned)
5 scanned← scanned ∪ {o}
6 if o.serializable then
7 foreach referenced object o′ of o do
8 if o′ /∈ (scanned ∪ unscanned) then
9 unscanned← unscanned ∪ {o′}

10 until unscanned = ∅
11 foreach o ∈ scanned do
12 so← serialize(o)
13 Context← Context ∪ {so}

side; the TEE side receives and deserializes ξ(s, ree) followed
by setting up ξ(s, tee), the execution context for s on the
TEE side. Lejacon can also update execution contexts using
updateTEEContext or updateREEContext, letting an
execution context be transmitted for updating the execution
context on the other side.

As Algorithm 2 shows, given an NCC service, Lejacon
detects which objects in rh it relies on. It is much like the
mark-and-sweep algorithm used for garbage collection [41],
[42], [43]: all of the objects that are reachable from the roots
(i.e., the variables in γ(ϕm) and the static class variables) are
collected. Since these objects need to be transmitted between
the JVM and the enclave, unserializable objects are excluded
from object collection (lines 6∼9).

Lejacon takes a passing-by-value strategy to synchronize
contexts. Thus it needs to serialize and transmit the heap
objects between the REE and the TEE side when necessary
(lines 11∼13). After deserialization, the context on one side
is used for updating the context on the other side. Objects can
be missing on one side if they are non-serializable; Lejacon
fails to run a method (or an NCC service) if the method (or
the service) requires to access any missing object(s).

4) Enclave/Outside Calls: A Java application can invoke a
native function inside the enclave through JNI. Lejacon sets
up two agents: LejaconJ and LejaconN. LejaconJ runs on the
JVM. Every time the application needs to perform confidential
computing, LejaconJ sends a request to LejaconN. LejaconN
is an agent of the NCC services and can further invoke the

services in the enclave through ECalls.
Lejacon does not support application-level OCalls, since

the SCW principle requires that all methods reachable from a
confidential method must be executed in the enclave(s). Mean-
while, an enclave is in the user mode. Thus the system services
(e.g., process creation and management, device handling) can
only be requested via explicit OCalls (system calls),1 even
though it is often not necessary to synchronize contexts for
these OCalls.

5) Attestation: Lejacon performs a standard remote attes-
tation when using an enclave [32]. The remote attestation
guarantees the trustworthiness of the enclaves, and as well the
confidentiality and integrity of the confidential tasks running
in them.

6) Put It Together: Fig. 5(a) shows the process of running
a confidential application on Lejacon. When the application
needs to create an enclave or call a confidential service,
it sends a confidential request to LejaconJ (① or ④). Le-
jaconJ parses the request, serializes the execution context,
and transmits the context to LejaconN. In order to use an
enclave, LejaconN makes an ECall to build an enclave (⑤)
and performs a remote attestation on the enclave (②). In order
to invoke an NCC service, LejaconN sets up the execution
context on the TEE side. The execution engine in the enclave
then starts, performing confidential computing (③ and ⑤).
After that, the output and the updated execution context on the
TEE side are serialized and transmitted to LejaconJ. LejaconJ
retrieves the results and updates the contexts on the REE side.

D. Infrastructure

We have implemented Lejacon as a lightweight infrastruc-
ture for Java confidential computing. Lejacon supports the
development of confidential Java applications on the basis
of Intel SGX SDK [44]. It provides an annotation system
for supporting the demand-driven programming paradigm, a
toolchain built atop Native Image tool [39] for Java native
compilation, and a runtime (and supporting libraries) built
atop Substrate VM runtime [40] and OpenJDK [45]. Lejacon
uses Intel’s Data Center Attestation Primitives (DCAP) [46]
to support remote attestations when creating enclaves.

V. EVALUATION

We have evaluated Lejacon on a set of benchmarks. Our
evaluation is designed to answer three research questions:

• RQ1 Can Lejacon support Java confidential computing
effectively?

• RQ2 Can Java applications achieve competitive perfor-
mance on Lejacon, compared with some state-of-the-art
runtime system(s)?

• RQ3 Can Lejacon be practically used in running Java
confidential computing tasks?

1In practice, system calls are not in the closed-world. However, Lejacon
allows for explicit OCalls in a confidential call chain that otherwise its
functionalities are constrained. Implicit OCalls, i.e., application-level method
invocations from TEE to REE, are forbidden.



TABLE II
TECHNIQUES UNDER COMPARISONS.

Technique Is the app
partitioned?

REE Side TEE Side
Use Code Use Code

JVM Rep. JVM Rep.
BaseJ × ✓ bytecode \ \
OcclumJ ✓ ✓ bytecode ✓ bytecode
Lejacon ✓ ✓ bytecode × native code

A. Setup

Technique. We compare Lejacon against two techniques:
BaseJ and OcclumJ.

1) BaseJ is the baseline. It corresponds to a general sce-
nario, in which each application runs only on a JVM,
without performing any confidential computing.

2) OcclumJ is a JVM-in-enclave, LibOS-based solution.
It uses Occlum (a library OS [14]) as the underlying
system for running confidential code on a feature-
complete JVM in the enclave; the non-confidential code
communicates with the confidential code through remote
method invocations (RMIs).

TABLE II summarizes the characteristics of each technique,
where the code can be either in bytecode or in native.

To the best of our knowledge, OcclumJ is the most ap-
propriate technique that is comparable with Lejacon. Some
other techniques, such as Civet [22], Uranus [23] and Montsal-
vat [47], are not compared in our study, since their tools
are not publicly available or they perform platform-dependent
compilations of Java confidential/non-confidential code.

Dataset. We prepare a dataset for our evaluations. TABLE III
shows an overview of the dataset. It contains four mini
applications (app-print, app-digest, app-rsa, and
app-sqlparser), each containing 1∼8 starting confiden-
tial methods. It also contains six CoreTest (ct) benchmarks
(ct-asn1, ct-i18n, ct-util, ct-math, ct-pqc and
ct-crypto) that are synthesized from 254 tests for the
core module of the BouncyCastle, a widely-used open source
cryptography library [48]; each benchmark invokes 2∼168
starting confidential methods (i.e., BouncyCastle APIs).

Metric. We use three metrics in the evaluation:
(1) TCB size. We measure the TCB size of each benchmark

by ① TCB-IC (Number of in-enclave Java classes), ② TCB-IM
(Number of in-enclave methods), and ③ TCB-LS (Size of the
built library). The larger the TCB size, the larger the attack
surface, and the more vulnerable an application’s confidential
computing [27].

(2) IEMF (In-Enclave Memory Footprint). It measures at
runtime the in-enclave memory footprint of each benchmark.
The larger the memory footprint, the more likely the con-
fidential computing is vulnerable and the more computation
resources are consumed for its confidential computing.

(3) ET (Total Execution Time). It measures the performance
using the execution time of the benchmarks. As §IV-B3
explains, the execution time is further divided into ① ET0

(Time on running confidential code), ② ET1 (Time on context
synchronization), ③ ET2 (Time on environment management).

As for BaseJ, ET of each benchmark only contains the time
spent on running confidential code on a non-confidential JVM.
As for OcclumJ, ET2 also contains the time spent on JVM
management (i.e., starting a JVM in an enclave).

Configuration. Our evaluation is conducted on a server
equipped with Intel Xeon Platinum 8369B CPU (2.70GHz),
30GB DRAM, and Ubuntu 18.04.5 LTS. The SDK for the
Intel SGX platform [44] is of version 2.15. OpenJDK v11 [45]
is used on the REE side. In addition, Lejacon employs the
Native Image tool of GraalVM CE v21.3.0 [39] to generate
native libraries; the OcclumJ executables (jar files) are created
for Occlum v0.24.0.

B. Confidentiality

TCB size. TABLE IV summarizes the TCB sizes of bench-
marks. It can be observed that the applications on Lejacon are
of much smaller TCB sizes than those on OcclumJ. Compared
with OcclumJ, Lejacon reduces the TCB sizes by 90+%, with
fewer in-enclave classes and methods.

One main reason is that OcclumJ creates, for each bench-
mark, a fat jar file containing third-party libraries. When
running on OcclumJ, each benchmark (even the simplest
application app-print) needs to be zipped into a jar
file of hundreds or thousands of classes. For example,
app-sqlparser uses a library Druid [49], and its jar
file contains about 2.1K Java classes and 32K methods;
app-digest and app-rsa depend on the whole Bouncy-
Castle library, and each of their jar files is of 4.7K classes and
30K+ methods. The ct benchmarks also rely on BouncyCastle,
and each jar file is of 3.1K classes and 23K methods.

Comparatively, after reachability analysis, Lejacon excludes
a large number of unreachable classes and methods, reducing
the numbers of in-enclave classes and methods by 42∼93%
and 61∼99%, respectively. The reachability analysis signifi-
cantly reduces the numbers of in-enclave classes and methods.

The difference in the TCB size also arises due to the runtime
systems (OcclumJ’s Java runtime and Lejacon’s runtime) and
libraries introduced into enclaves. For OcclumJ, TCB-LS for
the simple app-print is 382MB, about 23.9× of that in
Lejacon. A small-sized system library (<10MB), rather than
the rich libraries for the whole Java runtime, is compiled into
each Lejacon’s executable; it significantly shrinks the attack
surface.

Memory footprint. TABLE IV shows the in-enclave memory
footprint of each benchmark. Obviously, Lejacon also keeps
much smaller memory footprints than OcclumJ. The memory
footprints w.r.t. the four mini applications and most of the ct
benchmarks can be reduced by 90+%. The memory footprint
w.r.t. ct-crypto on Lejacon is reduced by 72.5%, compared
with that on OcclumJ.

The main reason is that Lejacon does not take the JVM-
in-enclave strategy. Thus the memory for the Java runtime
(300+MB per benchmark) is waived. The reachability analysis



TABLE III
BENCHMARKS USED IN THE EVALUATION.

Benchmark Main Third Party
Library

#Starting Confidential
Methods

Description

app-print \ 1 A simple program that prints strings on the terminal.
app-digest BouncyCastle-full 8 An application that supports hash algorithms.
app-rsa BouncyCastle-full 5 An application that supports RSA, an asymmetric encryption algorithm.
app-sqlparser Druid 3 A SQL parser using Druid [49] (a Java library for database connection pools).
ct-asn1 BouncyCastle-core 48 Tests for parsing and writing asn.1 objects.
ct-i18n BouncyCastle-core 2 Tests for the internationalization APIs.
ct-util BouncyCastle-core 5 Tests for the utility classes.
ct-math BouncyCastle-core 19 Tests for the APIs in the math package.
ct-pqc BouncyCastle-core 98 Tests for the APIs in the post-quantum lightweight crypto packages.
ct-crypto BouncyCastle-core 168 Tests for the base classes from the crypto APIs.

TABLE IV
COMPARISON OF THE TCB SIZES AND MEMORY FOOTPRINTS BETWEEN OCCLUMJ AND LEJACON. Here ∇ is used to present the percentages of decreases

of Lejacon, compared with OcclumJ, in TCB-LS and IEMF; app-digest runs several hash algorithms (e.g., MD5) using a total of 256KB messages.

Benchmark OcclumJ (w/o reachability analysis) Lejacon (w/ reachability analysis)
TCB-IC TCB-IM TCB-LS (MB) IEMF (MB) TCB-IC TCB-IM TCB-LS (MB) (∇) IEMF (MB) (∇)

app-print 436 3285 382 351.4 212 7 16 (95.8%) 10.5 (97.0%)
app-digest (256KB) 4757 32450 388 407.1 367 608 17 (95.6%) 25.1 (93.8%)
app-rsa 4757 32456 388 404.0 614 3209 21 (94.6%) 25.4 (93.7%)
app-sqlparser 2112 31725 386 355.4 1221 12234 29 (92.5%) 15.7 (95.6%)
ct-asn1 3128 23279 429 360.6 578 2382 21 (95.1%) 24.6 (93.2%)
ct-i18n 3128 23279 429 351.4 218 30 16 (96.3%) 10.5 (97.0%)
ct-util 3128 23279 429 351.4 218 47 16 (96.3%) 11.5 (96.7%)
ct-math 3128 23279 429 539.4 534 3015 21 (95.1%) 75.3 (86.0%)
ct-pqc 3128 23279 429 545.1 409 1406 22 (94.9%) 97.3 (82.2%)
ct-crypto 3128 23279 429 547.9 1346 8644 33 (92.3%) 150.4 (72.5%)

taken by Lejacon also helps exclude many unnecessary classes,
reducing the code residing in the enclave memory.

Answer to RQ1: Lejacon performs reachability analysis and
leverages a lightweight runtime system, reducing the TCB
sizes by more than 90% and keeping smaller memory foot-
prints than OcclumJ at runtime.

C. Performance

TABLE V and Fig. 6 compare the total execution time of the
NCC services of the benchmarks. Benchmarks running on Oc-
clumJ and Lejacon are in general slower than those on BaseJ.
For example, BaseJ outperforms Lejacon and OcclumJ by 2×
and 28×, respectively, in its execution time when running
app-sqlparser. Each benchmark, when running on SGX,
needs an enclave. The overhead is significant (26.6∼99.8% of
the total execution time on OcclumJ and 6.6∼99.9% of that on
Lejacon); serialization, communication, memory encryption
and decryption also introduce extra runtime overhead [50],
[51]. Comparatively, BaseJ does not run confidential code in
enclaves and incurs no extra cost of using enclave(s).

A further investigation helps draw out four observations.
First, confidential code is in general fast when running
on Lejacon. Compared with OcclumJ, Lejacon achieves the
speedups by up to 16.2× (app-print) in running con-
fidential code. Even though running ct-asn1 on Lejacon
incurs the cost of 499.7ms in environment management, it
is about 18.6% faster than that on BaseJ in its total execu-
tion time. Indeed, confidential code is AOT compiled into
native code, and thus Lejacon is faster in running confidential

code of most benchmarks than BaseJ and OcclumJ which
interpretively execute bytecode on JVMs. Note that JVM can
perform just-in-time (JIT) compilation and optimization when
running computation-intensive applications/services. Thus the
confidential code of ct-pqc and ct-crypto runs faster on
BaseJ and OcclumJ than on Lejacon.

Second, time needs to be spent on context synchronizations
and serialization. As Fig. 7 shows, ET1 of running app-digest
on Lejacon (or OcclumJ) increases along with the increase
of the input’s size. The main reason is that both Lejacon
and OcclumJ do partition applications, incurring overheads for
transmitting data across the enclaves. It imposes the necessity
of reducing data transmissions and extra costs during confiden-
tial computing. Furthermore, Lejacon is faster than OcclumJ in
preparing/synchronizing execution contexts — when the input
size is less than 1MB, ET1 on Lejacon is about 50% of that on
OcclumJ; as the input size increases, ET1 on Lejacon grows,
while it is always less than that on OcclumJ.

Third, the optimization strategy taken by Lejacon improves
its performance. As we have explained in §IV-B3, a loop of
running an NCC service can be optimized into one wrapped
service such that redundant context synchronizations are
waived. We run app-digest with different hash algorithms
for 1K times. As Fig. 8 shows, the optimization strategy helps
speed up the services by 13.2∼71.9% when the NCC service
is repeatedly executed.

Fourth, costs for environment management are significant.
Both Lejacon and OcclumJ need to create enclaves. As TA-
BLE V shows, for each benchmark, Lejacon needs to spend



TABLE V
EXECUTION TIME OF THE BENCHMARKS ON DIFFERENT RUNTIME SYSTEMS. Here (1) △ measures the increase of the execution time on Lejacon or
OcclumJ, compared with that on BaseJ; (2) for each benchmark, p measures how many percentage of the total execution time is spent on an activity.

Benchmark BaseJ OcclumJ Lejacon
ET ET(△) ET0 (p(%)) ET1 (p(%)) ET2 (p(%)) ET(△) ET0 (p(%)) ET1 (p(%)) ET2 (p(%))

app-print <0.05ms 6.2s (>103×) <0.05ms (0.0) 14.2ms (0.2) 6.1s (99.8) 383.4ms (>103×) <0.05ms (0.0) <0.05ms (0.0) 383.4ms (99.9)
app-digest 171.1ms 8.9s (52.0×) 382.2ms (4.3) 160.8ms (1.8) 8.4s (93.9) 964.1ms (5.6×) 105.7ms (11.0) 80.5ms (8.3) 777.9ms (80.7)
app-rsa 345.4ms 6.8s (19.6×) 629.2ms (9.3) 30.0ms (0.4) 6.1s (90.3) 1.1s (3.3×) 574.4ms (50.1) 2.2ms (0.2) 568.9ms (49.7)
app-sqlparser 230.6ms 6.5s (28.0×) 327.4ms (5.1) 28.1ms (0.4) 6.1s (94.5) 451.9ms (2.0×) 3.3ms (0.7) 0.7ms (0.2) 447.9ms (99.1)
ct-asn1 749.5ms 7.7s (10.3×) 1.5s (19.3) 65.7ms (0.8) 6.2s (79.8) 610.4ms (0.8×) 99.0ms (16.2) 11.7ms (1.9) 499.7ms (81.9)
ct-i18n <0.05ms 6.2s (>103×) 1.1ms (0.0) 14.0ms (0.2) 6.2s (99.8) 497.5ms (>103×) <0.05ms (0.0) 0.2ms (0.0) 497.3ms (99.9)
ct-util 2.4ms 6.1s (>103×) 6.1ms (0.1) 17.1ms (0.3) 6.1s (99.6) 489.7ms (204.0×) 0.3ms (0.1) 1.7ms (0.3) 487.7ms (99.6)
ct-math 4.3s 14.5s (3.4×) 7.4s (50.7) 52.7ms (0.4) 7.1s (48.9) 8.7s (2.0×) 7.0s (80.8) 9.2ms (0.1) 1.7s (19.1)
ct-pqc 10.5s 20.8s (2.0×) 13.6s (65.1) 128.4ms (0.6) 7.1s (34.3) 15.6s (1.5×) 13.9s (89.2) 32.6ms (0.2) 1.7s (10.6)
ct-crypto 12.5s 27.5s (2.2×) 20.0s (72.8) 170ms (0.6) 7.3s (26.6) 25.8s (2.1×) 24.0s (93.2) 45ms (0.2) 1.7s (6.6)

app-print app-digest app-rsa app-sqlparser ct-asn1 ct-i18n ct-util ct-math ct-pqc ct-crypto

Benchmarks

100ms

1s

10s

100s

Ex
ec

ut
io

n 
Ti

m
e 

(E
T)

OcclumJ
Lejacon

Fig. 6. Comparison of the execution time between OcclumJ and Lejacon on
the benchmarks.

256KB 512KB 1MB 2MB 4MB
Message Size

0

300

600

900

1200

1500

Co
nt

ex
t 

Sy
nc

. (
m

s)

OcclumJ
Lejacon

Fig. 7. ET1 of app-digest with different sizes of inputs.

0.4∼1.7s on environment management and OcclumJ 6.1∼8.4s.
OcclumJ spends 5.4∼7.6 more seconds on environment man-
agement than Lejacon—the time is mainly spent on initializing
an enclave for running the library OS and starting a JVM for
running confidential code.

Answer to RQ2: Lejacon achieves competitive performance
in running Java confidential code. Lejacon speedups enclave
initialization, and also takes an optimization strategy which
reduces the cost of synchronizing contexts.

D. Correctness and Practical Use

We further compare the test results on different runtime
systems. We run the BouncyCastle’s unit tests on BaseJ and
on Lejacon. A comparison of the results reveals that Lejacon
is consistent with BaseJ in running these tests. Thus Lejacon
is trustworthy in executing the BouncyCastle tests containing
confidential computing tasks.

However, it is notable that execution contexts need to be
prepared for running confidential code on Lejacon; an NCC
service may fail to run if it relies on any unserializable
objects on the REE side. Furthermore, SGX does not allow
for parallel computing on both sides. It remains one of the

MD4 MD5 SHA-256 SHA-512 GOST3411 WHIRLPOOL TIGER SM3
Algorithm

10
20
30
40
50
60
70

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

ET0
ET1
ET2

Fig. 8. Comparison of the execution time before and after optimization. Here
app-digest with eight hash algorithms is chosen and each algorithm runs
for 1K times.

TABLE VI
TYPICAL APPLICATIONS RUNNING ON LEJACON.

Application LoC TCB-LS
(MB)

Description

SQLAudition 13,556 30.54 Audit the security of SQL state-
ments to prevent malicious SQL
from actual executions. We let the
audit service run on the TEE side,
expecting the process to be blind
to the attackers and keeping the
integrity of the results.

ReEncryption 32,009 19.26 Decrypt the cipher-text and en-
crypt it again with another key
such that the cracking of the orig-
inal key will not compromise the
objective applications.

future directions to extend Lejacon such that it allows contexts
containing unserializable objects to be synchronized and as
well parallel computing to be performed on both sides.

In addition, the SCW principle might lead to false positives
since Lejacon over-approximately collects reachable class-
es/methods. Java reflections inevitably have false negatives,
as it is impossible to collect reflected classes/methods through
traditional static program analysis. Correspondingly, Lejacon
leverages a dynamic analysis technique, which collects re-
flection calls at runtime and further compile the reflected
classes/methods if they are reachable from the confidential
services. It remains a future direction in statically analyzing
Java reflections and natively compiling confidential services
of reflected classes/methods.

Lejacon is valuable in practice. It has been incorporated
into the Teaclave Java TEE SDK (an open-sourced industry
product) and served confidential computing in production en-



vironments. TABLE VI shows two real applications benefiting
from Lejacon and the SDK.

Answer to RQ3: Lejacon is correct in running the benchmarks.
However, an NCC service may fail to run on Lejacon if the
execution context is not well prepared. Lejacon is also used
in real production environment.

VI. RELATED WORK

We discuss two strands of related work: (1) partition frame-
works for confidential computing; and (2) runtime supports for
confidential computing.

A. Partition Framework for Confidential Computing

An application is usually partitioned for confidential com-
puting. Glamdring is a source-level partitioning framework of
C applications for Intel SGX, using static program slicing [15].
Rubinov et al. propose an automated partitioning framework
that uses taint analysis for partitioning and running Android
confidential computing on ARM’s TrustZone [52]. CFHider
provides control flow confidential protection by moving branch
statement conditions to SGX enclaves, which offers high
confidentiality while maintaining low overhead [53]. Similar
to Lejacon, the Montsalvat technique also leverages GraalVM
Native Image tool [39] to build Java confidential applica-
tions [47]. It compiles both non-confidential and confidential
code into native code and introduces proxies for objects
appearing in different environments simultaneously.

Similarly, Lejacon partitions the application into the confi-
dential and non-confidential parts. However, Lejacon keeps the
non-confidential code in form of bytecode and compiles the
confidential code into native services. Thus Lejacon is much
more suitable for confidential serverless computing where
services are short-term and sensitive to startup latency.

Lejacon employs separate compilation to partition a Java
application. Separate compilation is widely used in practice.
It refers to the ability that each program module can be
compiled separately but linked together to produce the final
executable. Many separate compilation techniques do exist
for speeding up compilation [54], [55] and enabling cross-
language compilation [56], [57], [58]. Some other techniques,
such as [59], [60], are also available for studying how the
separate compilation can be precisely conducted.

To the best of our knowledge, Lejacon is the first technique
that applies the SCW principle to Java confidential computing:
it performs separate compilation, in which the Java source
code is separately compiled into a Java application along with
a set of native services; it also performs reachability analysis
during compilation such that any NCC service can run in an
enclave closurely.

B. Runtime Support for Confidential Computing

Several TEE solutions do exist in recent years, support-
ing trustworthy/confidential computing. ARM’s TrustZone is
a confidential computing technique that is mainly used by
IoT devices [61], [62]. It divides the CPU mode into the
secure/normal modes and splits computer resources between

the two modes. AMD SEV extends the AMD-V architec-
ture in running secure virtual machines (VMs) by encrypt-
ing the VM’s memory image [63]. Sanctum offers prov-
able isolation of software modules sharing resources and
provides a scheme to defend against software side-channel
attacks [64]. Penglai provides a software-hardware co-design
to support fine-grained, large-scale secure memory with fast-
initialization [65].

One mainstream is to run confidential code on library OSes
deployed on the above TEE solutions [13], [66]. SCONE
provides a modified C standard library inside enclaves [10]. It
forwards libc calls and system calls to the host. Graphene-SGX
implements a partial library OS inside enclaves, excluding
the storage, network, and threading functionalities [11]. SGX-
LKL employs a complete library OS in enclaves, providing
a minimal set of host interfaces [21]. Occlum, which is
employed by OcclumJ, is also a library OS that supports secure
and efficient multitasking inside enclaves [14].

For supporting Java confidential computing, some JVM-in-
enclave solutions do exist. Civet is a framework for parti-
tioning Java applications into enclaves [22]. It uses language-
level defenses to harden the enclave interface, and also pro-
vides a partitioned JVM and garbage collection algorithm
designed for enclaves. Uranus also partitions Java confidential
applications [23]; it supplements Civet in that it provides a
more efficient enclave boundary and a GC algorithm for data-
intensive applications.

Comparatively, Lejacon removes JVMs from enclaves by
performing AOT static compilation of the confidential code.
As a result, Lejacon keeps applications’ TCB sizes small and
also allows NCC services to start/run quickly.

VII. CONCLUSION

Lejacon is a novel approach to Java confidential computing.
It takes a balance between Java’s platform independence and
necessity of native execution in enclaves by a demand-driven
programming paradigm, an SCW-directed separate compila-
tion technique, and a runtime system for running confidential
Java code. Lejacon is effective in protecting confidential Java
applications, reducing their TCB sizes and in-enclave memory
footprints at runtime.

VIII. DATA AVAILABILITY

The source code of Lejacon and use cases are publicly
available.2 The benchmarks used in the evaluation are also
available.3 Lejacon, along with its Java TEE SDK, becomes
part of a universal secure computing platform.4

ACKNOWLEDGEMENT

We would like to thank the researchers and engineers in the
GraalVM community for their constructive feedback. Yuting
Chen is the corresponding author. This research is supported
by National Natural Science Foundation of China (Grant No.
62272296 and 62032004).

2https://github.com/apache/incubator-teaclave-java-tee-sdk
3https://github.com/MatthewXY01/Lejacon
4https://teaclave.apache.org/



REFERENCES

[1] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution Envi-
ronment: What It is, and What It is Not,” in TrustCom/BigDataSE/ISPA
2015(1). IEEE, 2015.

[2] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions and
Software Model for Isolated Execution,” in HASP@ISCA 13. ACM,
2013.

[3] A. Rao, “Rising to the Challenge—Data Security with
Intel Confidential Computing,” 2022. [Online]. Available:
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/
Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/
1353141

[4] Microsoft, “Build with SGX enclaves - Azure Virtual Machines,”
2022. [Online]. Available: https://docs.microsoft.com/en-us/azure/
confidential-computing/confidential-computing-enclaves

[5] P. Karnati, “Data-in-Use Protection on IBM Cloud Using Intel
SGX,” 2019. [Online]. Available: https://www.ibm.com/cloud/blog/
data-use-protection-ibm-cloud-using-intel-sgx

[6] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptol.
ePrint Arch., 2016. [Online]. Available: http://eprint.iacr.org/2016/086

[7] M. Schwarz, S. Weiser, and D. Gruss, “Practical Enclave Malware with
Intel SGX,” in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2019.

[8] R. Leslie-Hurd, D. Caspi, and M. Fernandez, “Verifying Linearizability
of Intel® Software Guard Extensions,” in CAV 2015 (2), ser. LNCS, vol.
9207. Springer, 2015.

[9] Intel, “Understanding Intel® Software Guard
Extensions (Intel® SGX).” [Online]. Available:
https://www.intel.com/content/www/us/en/architecture-and-technology/
software-guard-extensions-enhanced-data-protection.html

[10] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. M. Eyers, R. Kapitza, P. R. Pietzuch, and C. Fetzer, “SCONE: Secure
Linux Containers with Intel SGX,” in OSDI 16. USENIX Association,
2016.

[11] C. che Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX,” in ATC 17. USENIX
Association, 2017.

[12] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB
Linux Applications With SGX Enclaves,” in NDSS 17. The Internet
Society, 2017.

[13] H. Tian, Y. Zhang, C. Xing, and S. Yan, “Sgxkernel: A Library Operating
System Optimized for Intel SGX,” in Proceedings of the Computing
Frontiers Conference, 2017.

[14] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan,
“Occlum: Secure and Efficient Multitasking Inside a Single Enclave of
Intel SGX,” in ASPLOS ’20. ACM, 2020.

[15] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, C. Fetzer, and
P. Pietzuch, “Glamdring: Automatic Application Partitioning for Intel
SGX,” in USENIX ATC 17. USENIX Association, 2017.

[16] A. Atamli-Reineh and A. P. Martin, “Securing Application with Software
Partitioning: A Case Study Using SGX,” in SecureComm 15, ser.
LNICST, vol. 164. Springer, 2015.

[17] “CVE-2022-23302,” 2022. [Online]. Available: https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2022-23302

[18] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz, C. Fetzer,
P. R. Pietzuch, and R. Kapitza, “SecureKeeper: Confidential ZooKeeper
using Intel SGX,” in Middleware 16. ACM, 2016.

[19] S. Brenner, T. Hundt, G. Mazzeo, and R. Kapitza, “Secure Cloud Micro
Services Using Intel SGX,” in DAIS, ser. LNCS, vol. 10320. Springer,
2017.

[20] L. Coppolino, S. D’Antonio, G. Mazzeo, and L. Romano, “A Compara-
tive Analysis of Emerging Approaches for Securing Java Software with
Intel SGX,” Future Generation Computer Systems, vol. 97, 2019.

[21] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov, and
P. R. Pietzuch, “SGX-LKL: securing the host OS interface for trusted
execution,” 2019. [Online]. Available: http://arxiv.org/abs/1908.11143

[22] C. che Tsai, J. Son, B. Jain, J. McAvey, R. A. Popa, and D. E.
Porter, “Civet: An Efficient Java Partitioning Framework for Hardware
Enclaves,” in USENIX Security 20, 2020.

[23] J. Jiang, X. Chen, T. Li, C. Wang, T. Shen, S. Zhao, H. Cui, C.-L.
Wang, and F. Zhang, “Uranus: Simple, Efficient SGX Programming and
Its Applications,” in ASIA CCS ’20. ACM, 2020.

[24] “SOFABoot on Occlum,” 2022. [Online]. Available: https://github.com/
occlum/occlum/tree/master/demos/sofaboot

[25] Oracle, “HotSpot.” [Online]. Available: https://openjdk.org/groups/
hotspot/

[26] Eclipse, “OpenJ9.” [Online]. Available: https://www.eclipse.org/openj9/
[27] S. C. Misra and V. C. Bhavsar, “Relationships Between Selected

Software Measures and Latent Bug-Density: Guidelines for Improving
Quality,” in ICCSA 03, ser. LNCS, vol. 2667. Springer, 2003.

[28] B. C. Xing, M. Shanahan, and R. Leslie-Hurd, “Intel®Software Guard
Extensions (Intel®SGX) Software Support for Dynamic Memory Allo-
cation inside an Enclave,” in HASP@ISCA 16. ACM, 2016.

[29] Intel, “Intel Software Guard Extensions Developer Guide,” 2021.
[Online]. Available: https://download.01.org/intel-sgx/sgx-linux/2.15/
docs/Intel SGX Developer Guide.pdf

[30] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, 1976.

[31] M. Mishra and J. Kar, “A Study on Diffie-Hellman Key Exchange
Protocols,” International Journal of Pure and Apllied Mathematics, vol.
114, 2017.

[32] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative Technology
for CPU Based Attestation and Sealing,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, vol. 13, no. 7. ACM, 2013.

[33] Oracle, “Java API Reference.” [Online]. Available: https://docs.oracle.
com/en/java/javase/11/docs/specs/jni/intro.html

[34] D. Bonetta, “GraalVM: Metaprogramming inside a Polyglot System,”
in Proceedings of the 3rd ACM SIGPLAN International Workshop on
Meta-Programming Techniques and Reflection, 2018.

[35] L. C. Stancu, C. Wimmer, S. Brunthaler, P. Larsen, and M. Franz,
“Comparing Points-to Static Analysis with Runtime Recorded Profiling
Data,” in PPPJ’14. ACM, 2014.

[36] B. Hardekopf and C. Lin, “The Ant and the Grasshopper: Fast and
Accurate Pointer Analysis for Millions of Lines of Code,” in PLDI 2007,
2007.

[37] B. Liu and J. Huang, “SHARP: Fast Incremental Context-Sensitive
Pointer Analysis for Java,” in OOPSLA 2022. ACM, 2022.

[38] D. He, J. Lu, and J. Xue, “Qilin: A New Framework For Supporting
Fine-Grained Context-Sensitivity in Java Pointer Analysis,” in ECOOP
2022. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[39] Oracle, “GraalVM Native Image,” 2021. [Online]. Available: https:
//www.graalvm.org/21.3/reference-manual/native-image/

[40] ——, “The Substrate VM Project,” 2020. [On-
line]. Available: https://docs.oracle.com/en/graalvm/enterprise/20/docs/
reference-manual/native-image/SubstrateVM/

[41] J. M. Piquer, “Indirect Mark and Sweep: A Distributed GC,” in Interna-
tional Workshop on Memory Management IWMM 95, ser. LNCS, vol.
986. Springer, 1995.

[42] Y. Ossia, O. Ben-Yitzhak, and M. Segal, “Mostly Concurrent Com-
paction for Mark-Sweep GC,” in ISMM 04. ACM, 2004.

[43] S. Richthofer, “Garbage Collection in JyNI - How to Bridge Mark/Sweep
and Reference Counting GC,” CoRR, vol. abs/1607.00825, 2016.

[44] “SGX Drive and SDK.” [Online]. Available: https://download.01.org/
intel-sgx/sgx-dcap/1.12/linux/distro/ubuntu18.04-server/

[45] Oracle, “OpenJDK 11,” 2019. [Online]. Available: https://openjdk.org/
projects/jdk/11/

[46] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski, “Supporting Third
Party Attestation for Intel SGX with Intel Data Center Attestation
Primitives,” 2018.

[47] P. Yuhala, J. Ménétrey, P. Felber, V. Schiavoni, A. Tchana, G. Thomas,
H. Guiroux, and J.-P. Lozi, “Montsalvat: Intel SGX Shielding for
GraalVM Native Images,” in Middleware ’21. ACM, 2021.

[48] Legion of the Bouncy Castle Inc., “Bouncy Castle Java Distribution.”
[Online]. Available: https://github.com/bcgit/bc-java

[49] Alibaba, “Alibaba Druid.” [Online]. Available: https://github.com/
alibaba/druid

[50] S. Gueron, “A Memory Encryption Engine Suitable for General
Purpose Processors,” Cryptology ePrint Archive, Paper 2016/204, 2016,
https://eprint.iacr.org/2016/204. [Online]. Available: https://eprint.iacr.
org/2016/204

[51] O. Weisse, V. Bertacco, and T. Austin, “Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves,” in ISCA ’17.
ACM, 2017.



[52] K. Rubinov, L. Rosculete, T. Mitra, and A. Roychoudhury, “Automated
Partitioning of Android Applications for Trusted Execution Environ-
ments,” in ICSE ’16. ACM, 2016.

[53] Y. Wang, Y. Shen, C. Su, K. Cheng, Y. Yang, A. Faree, and Y. Liu,
“CFHider: Control Flow Obfuscation with Intel SGX,” in INFOCOM
19. IEEE, 2019.

[54] Y. Xiao, D. Park, A. Butt et al., “Reducing FPGA Compile Time with
Separate Compilation for FPGA Building Blocks,” in 2019 International
Conference on Field-Programmable Technology (ICFPT), 2019.

[55] J. Privat and R. Ducournau, “Link-Time Static Analysis for Efficient
Separate Compilation of Object-Oriented Languages,” in PASTE ’05.
ACM, 2005.

[56] C. Höger, F. Lorenzen, and P. Pepper, “Notes on the Separate Compi-
lation of Modelica,” in 3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools. Linköping University
Electronic Press, 2010.

[57] G. Fourtounis and N. S. Papaspyrou, “Supporting Separate Compilation
in a Defunctionalizing Compiler,” in 2nd Symposium on Languages,
Applications and Technologies, vol. 29. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2013.

[58] M. Murphy, J. Marathe, G. Bharambe, S. Lee, and V. Grover, “Separate
Compilation in a Language-Integrated Heterogeneous Environment,” in
Languages and Compilers for Parallel Computing - 26th International

Workshop, LCPC 2013, ser. LNCS, vol. 8664. Springer, 2013.
[59] B. Niu and G. Tan, “Monitor Integrity Protection with Space Efficiency

and Separate Compilation,” in CCS ’13. ACM, 2013.
[60] Ali, Karim, “The Separate Compilation Assumption,” PhD Thesis,

UWSpace, 2014. [Online]. Available: http://hdl.handle.net/10012/8835
[61] ARM, “Building A Secure System using TrustZone Technol-

ogy.” [Online]. Available: https://developer.arm.com/documentation/
PRD29-GENC-009492/c

[62] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehen-
sive Survey,” ACM Comput. Surv., vol. 51, no. 6, 2019.

[63] AMD, “AMD Memory Encryption.” [Online].
Available: https://developer.amd.com/wordpress/media/2013/12/AMD
Memory Encryption Whitepaper v9-Public.pdf

[64] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation,” in USENIX Security 16.
USENIX Association, 2016.

[65] E. Feng, X. Lu, D. Du, B. Yang, X. Jiang, Y. Xia, B. Zang, and H. Chen,
“Scalable Memory Protection in the PENGLAI Enclave,” in OSDI 21.
USENIX Association, 2021.

[66] A. Baumann, M. Peinado, and G. C. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven,” in OSDI 2014. USENIX Association,
2014.


